

# /// Plug-in railway relay with 6 contacts

Rugged plug-in relays for extreme reliability, within long endurance applications and harsh environments

# D6-U200N-W

Instantaneous relay, weld-no-transfer, 6 pole *Part of D-platform* 

#### Features

- Compact plug-in design
- Instantaneous, 4 N/O 2 N/C contacts
- Weld-no-transfer (WNT) contacts
- Standard back EMF suppression diode
- Flat, square silver plated relay pins for excellent socket connection
- Wide range sockets
- Integrated snap lock
- Red or green LED optional
- Flexibility by many options

#### Connection diagram



# Description

Plug-in safety critical railway relay with 6 weld-no-transfer single contacts. Also equipped with a back EMF suppression diode.

No external retaining clip needed as integrated 'snap-lock' will hold relay into socket under all circumstances and mounting directions.

The construction of the relay and choice of materials makes the D6-U200N-W relay suitable to withstand corrosive atmospheres, low and high temperatures, shock & vibration and dry to very humid environments.

Compact design, choice of many options and a wide range of sockets makes the D6-U200N-W relay an easy and flexible solution to use.

### Application

Rugged plug-in relays for safety critical, extreme reliable and long endurance applications in harsh environments.

These relays are designed for demanding rolling stock applications such as door control, traction control, braking systems etc.

# Timing diagram



#### **Railway compliancy**

| EN 50155: 2017  |  |
|-----------------|--|
| IEC 60571: 2012 |  |
| IEC 61373: 2010 |  |

EN 50121-3-2: 2016 EN 45545-2: 2015 NF F16-101/102





### Options

- LED indicators green or red
- Double zener diode
- No diode
- Keying (coding relay to correct socket)

Remark: Not all combinations possible





### Weight

**Dimensions (mm)** 

~ 110 g

#### Serializing

Each relay is marked with a unique serial number to which link important information and test results.

The GTIN (Global Trade Item Number) and part number are printed on each relay in both text and data matrix code according the worldwide recognized GS1 standard, being able to scan each relay for logistical and traceability purposes.

| Sockets |                        | Mounting       |            |               |     |
|---------|------------------------|----------------|------------|---------------|-----|
|         |                        | Surface / Wall | 35 mm rail | Panel / Flush | PCB |
| Ľ       | Screw                  | V23            | V23        | -             | -   |
| ctic    | Screw - wide terminals | V22 BR         | V23 BR     | -             | -   |
| nne     | Spring clamp           | V29            | V29        | V33           | -   |
| Ö       | Faston                 | -              | -          | V31           | -   |
| nal     | Crimp                  | -              | -          | V26           | -   |
| m       | Solder tag             | -              | -          | V3            | -   |
| Ę       | PCB                    | -              | -          | -             | V32 |

For more information see the respective datasheets

It consider the second second





### **Coil characteristics**

| Operating voltage range | 0.7 - 1.25 Unom |
|-------------------------|-----------------|
| Udrop-out               | > 5 % Unom      |

| Туре       | Unom (VDC) | Umin (VDC) | Umax (VDC) |
|------------|------------|------------|------------|
| D6-U201N-W | 24         | 16.8       | 30         |
| D6-U202N-W | 48         | 33.6       | 60         |
| D6-U203N-W | 72         | 50.4       | 90         |
| D6-U204N-W | 110        | 77         | 137.5      |
| D6-U207N-W | 36         | 25.2       | 45         |

Other types on request

Remarks:

Umin is the must-operate voltage at which the relay has picked up in all circumstances (worst-case situation), in practice the relay picks up at a lower voltage Always select the nominal voltage as close as possible to the actual voltage in the application

# **Contact characteristics**

| Amount and type of contacts | 2 N/C - 4 N/O                                         |
|-----------------------------|-------------------------------------------------------|
| Maximum make current        | 6 A                                                   |
| Maximum continuous current  | 6 A                                                   |
| Maximum switching voltage   | 250 VDC/AC                                            |
| Minimum switching voltage   | 12 V                                                  |
| Minimum switching current   | 10 mA                                                 |
| Contact resistance          | $\leq$ 100 m $\Omega$ (initial)                       |
| Material                    | Ag + 0.2 μm Au (gold flash for storage purposes only) |

# **Electrical characteristics**

| Dielectric strength Pole-pole |               | 3.5 kV, 50 Hz, 1 min acc. IEC 60664-1/EN 50124-1 |
|-------------------------------|---------------|--------------------------------------------------|
|                               | Cont-coil     | 2.5 kV, 50 Hz, 1 min acc. IEC 60664-1/EN 50124-1 |
|                               | Open contacts | 1.5 kV; 50 Hz; 1 min acc. IEC 60664-1/EN 50124-1 |
| Pulse withstanding            | IEC 60255-5   | 5 kV (1.2/50 μs) acc. IEC 60255-27               |

## Mechanical characteristics

| Mechanical life             | 10 x 10 <sup>6</sup> operations                 |
|-----------------------------|-------------------------------------------------|
| Maximum switching frequency | Mechanical: 3600 ops/h<br>Electrical: 360 ops/h |

# **Environmental characteristics**

| Vibration             | IEC 61373, Category I, Class B, Body mounted                                       |
|-----------------------|------------------------------------------------------------------------------------|
| Shock                 | IEC 61373, Category I, Class B, Body mounted                                       |
| Operating temperature | -40 °C+70 °C                                                                       |
| Protection            | IEC 60529, IP40                                                                    |
| Fire & smoke          | NF F 16-101, NF F 16-102, EN 45545-2: HL3 for requirements R22, R23, R26, UL 94/VO |
| Insulation materials  | Cover: polycarbonate<br>Base: nylon                                                |



## **Product labeling**

| Part number identification    | Part number mentioned on top side relay                                                                                                                                    |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Serial number identification  | Serial number mentioned on top side relay<br>Serial number = Lot number + year + week + reference number                                                                   |
| Data matrix code              | According GS1 standard, placed on top side relay<br>01 Global Trade Item Number 240 Part number 21 Serial number<br>Example:<br>011234567890123240123456789211234562209001 |
| Revision index identification | Linked to serial number                                                                                                                                                    |
| Terminals                     | Identification on bottom plate relay<br>Relay to be used with Mors Smitt relay sockets which have clear<br>terminal identification on each socket                          |

### **Railway compliancy**

| EN 50155: 2017     | Railway applications - Rolling stock - Electronic equipment                                                                      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| IEC 60571: 2012    | Railway applications - Electronic equipment used on rolling stock                                                                |
| IEC 61373: 2010    | Railway applications - Rolling stock equipment - Shock and vibration tests                                                       |
| EN 50121-3-2: 2016 | Railway applications - Electromagnetic compatibility                                                                             |
| NF F16-101/102     | Railway rolling stock - Fire behavior                                                                                            |
| EN 45545-2: 2015   | Railway applications - Fire protection on railway vehicles<br>Part 2: Requirements for fire behavior of materials and components |

# **Options**

| Code           | Description                  | Remark                                                                                                                | Cannot be<br>combined with: |
|----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Standard optio | ns:                          |                                                                                                                       |                             |
| Lg             | Green LED indicator          |                                                                                                                       |                             |
| Lr             | Red LED indicator            |                                                                                                                       |                             |
| Q              | Double zener diode over coil | Unom $\leq$ 120 V. Maximum allowed peak voltage 180 V, higher voltage will damage the diode. Replaces back EMF diode. | Z                           |
| Z              | No diode                     | Polarity independent                                                                                                  | Q                           |
| Keying         | Coding relay and socket      |                                                                                                                       |                             |

Remark: For application support or technical product support, contact your local Mors Smitt sales office (see contact details on last page).

# Electrical life expectancy

Due to the safety nature of the D6-U200N-W relays, please contact Mors smitt with detailed contact load data. With this information, Mors Smitt can provide a correct advice in line with your specific application.

Required contact data:

- Voltage
- Current
- Inductance of load
- Kind of suppression used on load
- Required number of operations • •
- Switching frequency



### Mounting possibilities/sockets

| V3  | V22BR | V23 | V23BR | V26 |
|-----|-------|-----|-------|-----|
| V29 | V31   | V32 | V33   |     |

#### Surface/wall mounting

| 338000302 | V22BR | Screw socket, wall mount, front connection (9 mm terminals)                   |
|-----------|-------|-------------------------------------------------------------------------------|
| 338000580 | V23   | Screw socket, wall mount, front connection (7.5 mm terminals)                 |
| 338000610 | V29   | Spring clamp socket, wall mount, front dual connection (2.5 mm <sup>2</sup> ) |

#### Rail mounting

| 338000580 | V23   | Screw socket, rail mount, front connection (7.5 mm terminals)                 |
|-----------|-------|-------------------------------------------------------------------------------|
| 338000402 | V23BR | Screw socket, rail mount, front connection (9 mm terminals)                   |
| 338000610 | V29   | Spring clamp socket, rail mount, front dual connection (2.5 mm <sup>2</sup> ) |

#### Panel/flush mounting

| 338100100 | V3  | Solder tag socket, panel mount, rear connection                                   |
|-----------|-----|-----------------------------------------------------------------------------------|
| 328400100 | V26 | Crimp contact socket, panel mount, rear connection, A260 crimp contact            |
| 338000560 | V31 | Faston connection socket, rear dual connection (4.8 x 0.8 mm)                     |
| 338000670 | V33 | Push-in terminal socket, panel mount, rear dual connection (3.3 mm <sup>2</sup> ) |
|           |     |                                                                                   |

| PCB mounting |     |                      |
|--------------|-----|----------------------|
| 338000561    | V32 | PCB soldering socket |

No external retaining clip needed as the 'snap-lock' will hold the relay into the socket under all circumstances and mounting directions (according shock & vibration requirements IEC 61373, Category I, Class B, Body mounted). If regulations require external retaining clips, these are available as well.

For more details see datasheets of the sockets on www.morssmitt.com







### Mechanical keying relay and socket (optional)





Function:

- To prevent wrong installation
- To prevent damage to equipment
- To prevent unsafe situations

Using keyed relays and sockets prevents a relay is inserted in a wrong socket. For example it prevents that a 24 VDC relay is put in a 110 VDC circuit. Positive discrimination is possible per different function, coil voltage, timing, monitoring, safety and non-safety.

The D relay keying option provides  $8 \times 8 = 64$  possibilities. Upon ordering the customer simply indicates the need for the optional keying. Mors Smitt will assign a code to the relay and fix the pins into the relay. The sockets are supplied with loose key receptacles. Inserting the keys into the socket is very simple and self explanatory.

Remark: Sockets and relay shown are examples.





#### Important for relay selection and operation

Make sure the relay is suitable for the application. For critical applications (for example: green loop applications) relays should be checked for proper opertion during periodic inspection.

#### Recommendations for long time contact reliability

For relays to enable failure free performance over a very long operational time, it is important to create the right circumstances. In any relay, contact usage and atmospheric conditions influence the contact surface. To counter this effect it is common practice to use a safety factor of > 2 to ensure long time contact reliability.

Therefore for long time contact reliability we recommend:

- Silver contacts: a minimum contact current of 20 mA per contact
- When low currents are switched not frequently, e.g. 10 mA once a day, it is advised to put similar contacts within the same relay in parallel
- With higher load switching, e.g. 110 VDC and > 1 A, put relay contacts in series
- Rule of thumb: any relay works best with switching currents > 20 mA in DC environment when frequently switched. When not switched frequently a higher switching current like 50 mA is better for a long reliable operational time
- Check relays regularly

#### Instructions for use

#### Installation

Before installation or working on the relay: disconnect the power supply first (no hot swapping)! Install socket and connect wiring according to the terminal identification. Plug relay into the socket ensuring there is no gap between the bottom of relay and the socket. Reverse installation into the socket is not possible due to the mechanical blocking snap-lock feature. Check to ensure that the coil connection polarity is not reversed. Relays can be mounted tightly together to save space. When rail mounting is used, always mount the socket in the direction of the UP arrow, to have proper fixation of the socket on the rail.

#### Warning!

- · Never use silicon in the proximity of the relays
- · Do not use the relay in the presense of flammable gas as the arc generated from switching could cause ignition
- · To remove relays from the socket, employ up and down lever movements. Sideway movement may cause damage to the coil wires



Relays should never be swapped to other circuit positions when taken out of its socket for inspection or fault finding, always place it back
into the original position to prevent contact resistance problems. Contact resistance problems can be created when swapping relays
between different circuit loads due the contact wear/condition having changed during its operational life.

#### Operation

After installation always apply the rated voltage to the coil to check correct operation. Long term storage may corrode the silver on the relay pins. When plugging the relay into the socket, the female bifurcated or trifurcated receivers will automatically cut through the corrosion on the pins and guarantee a reliable connection.

Before actual use of relays, it is advised to switch the load several times with the contacts. The contacts will both be electrically and mechanically cleaned due to the positive wiping action. Sometimes a contact can build up increased contact resistance ( $\leq 15 \text{ m}\Omega$  when new). When using silver contacts one can clean the contact by switching a contact load a few times using >24 VDC & ~ 2A. Increased contact resistance is not always problematic, as it depends on circuit conditions. In general a contact resistance of 1  $\Omega$  is no problem, consult Mors Smitt for more information.

Condensation inside the relay housing can occur when it moves from a warm (and humid) environment to a colder environment. This is a normal phenomenon and will not affect the function of the relay. Materials in the relay have no hygroscopic properties.





#### Inspection / maintenance

If the relay does not seem to operate correctly, check for presence of the appropriate coil voltage and polarity using a suitable multimeter. If a LED is fitted, it indicates voltage presence to the coil. If coil voltage is present, but the relay does not operate, a short circuit of the suppression diode is possible (this may have been caused due to reversed coil connection).

If the relay doesn't work after inspection, replace the relay with a similar model. Do not attempt to open the relay cover or try to repair. Contacts are calibrated and in balance, touching can affect proper operation. Also resoldering may affect correct operation. Since 2009 relays have tamper proof seals fitted and once broken, warranty is void.

Most relay defects are caused by installation faults such as overvoltage, spikes/transients, reversed coil connection, high/short current far exceeding the relay specifications. When returning the relays for investigation, please provide all information on the RMA form. Send defective relays back to the manufacturer for repair or replacement. Normal wear and tear or external causes are excluded from warranty.

RMA procedure see <u>www.morssmitt.com</u>





## Ordering scheme

| D6-U2                                   |      | N - |    | W0     | 24     | Code |         |                                 |               |
|-----------------------------------------|------|-----|----|--------|--------|------|---------|---------------------------------|---------------|
|                                         |      |     |    |        |        |      |         | -                               |               |
| Coil voltages                           | 01   |     |    |        |        |      |         | 24 VDC                          |               |
|                                         | 03   |     |    |        |        |      |         | 72 VDC                          |               |
|                                         | 04   |     |    |        |        |      |         | 110 VDC                         | Cannot be     |
|                                         | 07   |     |    |        |        |      |         | 36 VDC                          | combined with |
| Options                                 |      |     | Lg |        |        |      |         | Green LED indicator             |               |
| (add as many options as needed)         |      | d)  | Lr |        |        |      |         | Red LED indicator               |               |
|                                         |      |     | Q  |        |        |      |         | Double zener diode              | Z             |
|                                         |      |     | Z  |        |        |      |         | No diode                        | Q             |
| Contact information                     |      |     |    | W0     | 24     |      |         | Weld-no-transfer, 2 N/C - 4 N/O |               |
| (Double make / double bre               | eak) |     |    |        |        |      |         |                                 |               |
| Keying code                             |      |     |    |        |        |      | BS      | 24 VDC                          |               |
| (Optional, leave blank if not required) |      |     |    | BY     | 36 VDC |      |         |                                 |               |
|                                         |      |     |    | AT     | 48 VDC |      |         |                                 |               |
|                                         |      |     | CU | 72 VDC |        |      |         |                                 |               |
|                                         |      |     |    |        |        | BV   | 110 VDC |                                 |               |

Example: D6-U201N-LrQW024 code BS

Description: D6-U200N relay, Unom: 24 VDC, red LED indicator, double zener diode, weld-no-transfer contacts 2 N/C - 4 N/O, keying code BS







#### Over 10 million Mors Smitt relays in use in rail transport applications worldwide!

Mors Smitt Asia Ltd. 26/F, Casey Aberdeen House 38 Heung Yip Road, Wong Chuk Hang Hong Kong Tel: +852 2343 555 sales.msa@wabtec.com

Wabtec Netherlands B.V. Darwinstraat 10, 6718 XR Ede, Netherlands Tel: +31 (0)88 600 4500 sales.msbv@wabtec.com

#### (c) Copyright 2022

Mors Smitt France SAS 2 Rue de la Mandinière 72300 Sablé-sur-Sarthe, France Tel: +33 (0) 243 92 82 00 sales.msf@wabtec.com

Mors Smitt Technologies Ltd. 1010 Johnson Drive, Buffalo Grove, IL 60089-6918, USA Tel: +1 847 777 6497 salesmst@wabtec.com Mors Smitt UK Graycar Business Park, Burton on Trent, DE13 8EN, UK Tel: +44 (0)1283 357 263 sales.msuk@wabtec.com

RMS Mors Smitt 19 Southern Court, Keysborough, VIC 3173, Australia Tel: +61 (0)3 8544 1200 sales.rms@wabtec.com

All rights reserved. Nothing from this edition may be multiplied, or made public in any form or manner, either electronically, mechanically, by photocopying, recording, or in any manner, without prior written consent from Mors Smitt. This also applies to accompanying drawings and diagrams. Due to a policy of continuous development Mors Smitt reserves the right to alter the equipment specification and description outlined in this datasheet without prior notice and no part of this publication shall be deemed to be part of any contract for the equipment unless specifically referred to as an inclusion within such contract. Mors Smitt does not warrant that any of the information contained herein is complete, accurate, free from potential errors, or fit for any particular purpose. Mors Smitt does not accept any responsibility arising from any party's use of the information in this document.