

A 400 relay - 4 contacts Datasheet

Description

The A 400 relay has 4 double make / double break C/O contacts (form Z). The plug-in design offers secure locking feature for maximum ease of maintenance (no wires need to be disconnected or other hardware removed for relay inspection or replacement).

The resistance to impact and vibration is conforming the standards for Railway Transported Equipment. Positive mechanical keying of relay to socket is built into relay and socket during manufacture and terminal identifications are clearly marked on identification plate that is permanently attached to the relay.

The A 400 relays is pluggable in the following sockets: EA $102 \mathrm{~A}, \mathrm{EA} 102 \mathrm{AF}$, EA 103 AF, EA 104 A, EA 104 AF, EA 105 AF, EA 112 AF.

Application

The A 400 relay is designed for general purpose heavy duty applications such as lighting, pumps and fans, offering as an option a weld no transfer design for safety critical applications such as door control, emergency brake failure, interlocking traction and breaking

Features

- Instantaneous relay
- Optional weld no transfer contacts for safety critical applications
- Plug-in design with secure locking feature for maximum ease of maintenance
- 4 double make / double break C/O contacts (form Z), 8 A
- Contact life (mechanical) of 100 million cycles
- $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ operating temperature

Benefits

- Proven reliable in heavy duty application
- Long life cycle
- Easy to maintain and replace
- Low life cycle cost
- No maintenance

Railway compliancy

- NF F 62-002 Rolling stock-

Instantaneous relays contacts and sockets

- NF F16-101/102 Fire behaviour -

Railway rolling stock

MORS
SMITT

A 400 relay
 Technical specifications

Functional and connection diagrams

Timing diagram	Relay pin correspondence	
	Relay pin correspondence	Led (V) option (respect polarity) N.B.: Transil not needed on VAC coil relays
Connection diagram		
		N.B.: Transil not needed on VAC coil relays.

A 400 relay
 Technical specifications

Coil data - DC versions

Keying	Unom (VDC)	Uoperating (VDC)	Pnom (W)	Uhold (VDC)	Udrop-out (VDC)	R coil (Ω) (1)	L/R (ms)(2)
ME	12	$8 / 16$	3	6.25	1.25	48	30
AG	24	$16 / 33$	3	13.5	2.5	185	30
FL	36	$25 / 45$	3	21	3.5	430	30
DG	48	$33 / 60$	3	28.5	4.5	750	30
BG	72	$48 / 90$	3	40.5	6.5	1700	30
US	96	$65 / 120$	3	50	9	3000	30
SV	110	$75 / 138$	3	62	10	4000	30
EG	125	$88 / 156$	3	73	12	5700	30

(1) Coil resistance tol.: $\pm 8 \%$ at $20^{\circ} \mathrm{C}$
(2) Valid for closed relay.

Coil data - AC versions

Keying	Unom (VAC)	Uoperating (VAC)	Pnom (VA)	Uhold (VAC)	Udrop-out (VAC)	R coil ($\Omega)^{(1)}$	L/R (ms) (2)
SZ	115	$80 / 140$	3	65	10	4000	30
CG	220	$176 / 242$	3	129	21	15000	30

(1) Coil resistance tol.: $\pm 8 \%$ at $20^{\circ} \mathrm{C}$
(2) Valid for closed relay.

Contact data - standard version (Ag contacts)

Nominal current

Nominal breaking capacity and life
Nominal breaking capacity and life
Nominal breaking capacity and life Nominal breaking capacity and life Contact overload withstand

Contact closure time
Contact opening time
Minimum contact continuity
Number of contacts
Contact material
Contact resistance - initial
Contact resistance - end of life

8 A resistive
1 A at 72 VDC
350 mA at 72 VDC
1 A at $220 \mathrm{VAC}-50 \mathrm{~Hz}$,
L/R: 30 ms
$\cos \varnothing=1$
Lamp filament circuit: 120 W at 72 VDC At $24 \mathrm{VDC}: 100 \mathrm{~A}$ at $\mathrm{L} / \mathrm{R}=0$ for 10 ms
(10 operations at the rate of 1 operation per minute)
Pick-up time N/O $<40 \mathrm{~ms}$ Drop-out* time N/C: $<15 \mathrm{~ms}$
Pick-up time N/C $<35 \mathrm{~ms}$ Drop-out* time N/O: $<6 \mathrm{~ms}$
20 mA at 24 VDC
4 double make / double break contacts (form Z)
Hard silver overlay laminated to copper
$10 \mathrm{~m} \Omega \max$ at 5 A
$40 \mathrm{~m} \Omega$ max at 5 A

[^0]
A 400 relay
 Technical specifications

Contact design

Electrical characteristics

Dielectric strength	$2000 \mathrm{VAC}, 1$ min between contacts, $2600 \mathrm{VAC}, 1$ min between contacts, coil and frame $\geq 1000 \mathrm{M} \Omega$ at 500 VDC
Insulation resistance	

Mechanical \& environmental characteristics

Vibration	NF F 62-002 The tests are conducted in the X, Y, Z planes at frequency between $10 \& 150$ cycles (sinusoidal) at 2 g .
Shock	NF F 62-002 Tests are applied in both directions in the $\mathrm{X}, \mathrm{Y} \& \mathrm{Z}$ planes. Then successive shocks are administered consisting of the positive component of sinusoidal with a value of $30 \mathrm{~g}, 18 \mathrm{~ms}$. Other vibration and shock tests can be performed on request
Mechanical life	> 100×10^{6} operations
Weight	300 g
Temperature	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Humidity	$93 \% \mathrm{RH}, 40^{\circ} \mathrm{C}$ for 4 days
Salt mist	$5 \% \mathrm{NaCl}, 35^{\circ} \mathrm{C}$ for 4 days
Protection	IP40
Fire \& smoke	Materials: Polycarbonate (cover) / Polyester Melamine (base)
	Note: These materials have been tested for fire propagation and smoke emission according to standards NF F 16-101, NF F 16-102, ASTM E162 and ASTM E662, and have been approved to be used on the English/French train channel shuttle.

A Wabtec Company

A 400 relay
 Technical specifications

Dimensions (mm)

Keying

A 400 relay

Technical specifications

Dynamic relay selection curve No 1

AC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for resistive load (Power Factor = 1).

Curve	1	2	3	4
VAC	220	125	48	24

A 400 relay
 Technical specifications

Dynamic relay selection curve No 2

DC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for inductive load:
—— L/R=20 ms continuous current

- --- L/R=40 ms continuous current
* By connecting 2 contacts in series, DC current breaking capacity increases by 50%

Curves	$1-3$	$2-4$	$5-6$	$7-8$
VDC	220	125	48	24

A 400 relay
 Technical specifications

Dynamic relay selection curve No 3

DC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Curves shown for resistive load ($L / R=0$). Continuous current.

* By connecting 2 contacts in series, DC current breaking capacity increases by 50%

Curve	1	2	3	4
VDC	220	125	48	24

A 400 relay
 Technical specifications

Dynamic relay selection curve No 4

Maximum contact breaking capacity versus voltage for a given L/R.
Rate of contacts opening and closing $=600$ operations per hour.
Curves shown for resistive load ($\mathrm{L} / \mathrm{R}=0$) and inductive loads. Continuous current.
Life expectancy: 2 Millions of Cycles

Curve	1	2	3	4	5	6
$\mathrm{~L} / \mathrm{R}=$	0 ms	15 ms	20 ms	40 ms	60 ms	100 ms

A 400 relay
 Technical specifications

Dynamic relay selection curve No 5

Maximum power interruption versus load time constant (L/R) for a given voltage.
Curves shown for resistive loads. $\quad I=P / V$.

Curve	1	2	3	4	5
VDC	220	125	72	48	24

A 400 relay
 Technical specifications

Dynamic relay selection curve No 6

AC Current breaking capacity versus life expectancy in millions of cycles.
Rate of contacts opening and closing $=1200$ operations per hour.
Values shown for inductive loads -

- $\operatorname{Cos} \varnothing=0.7$
---- $\cos \varnothing=0.5$
——— $\operatorname{Cos} \varnothing=0.3$

Curves	$1,3 \& 4$	$2,5 \& 7$	$6,9 \& 10$	$8,11 \& 12$
VAC	220	125	48	24

A 400 relay
 Mounting possiblities

EA 102 A

EA 103 AF

EA 104 A

EA 112 AF

Mounting possibilities/sockets

Panel/flush mounting

```
EA 102 A Locking bracket (905843), rear connection, double Faston 5 mm (3/16")
EA 102 AF Wire locking spring (926853), rear connection, single Faston 5 mm (3/16")
EA 104 A Locking bracket (905843), rear connection, single Faston 5 x 0.8 mm
EA 104 AF Wire locking spring (926853), rear connection, single Faston 5 x 0.8 mm
EA 112 AF Wire locking spring (926853), rear connection, crimp contact
```

Surface/wall mounting

EA $103 \mathrm{AF}^{*}$	Wire locking spring (926853), front connection, M3 screw $6,5 \mathrm{~mm}$ ring terminals $\left(2,5 \mathrm{~mm}^{2}\right)$
EA $105 \mathrm{AF}^{*}$	Wire locking spring (926853), front connection, single Faston $5 \mathrm{~mm}(3 / 16$ ")

* Mounting possibility on 35 mm rail EN 50022 by adding suffix D to the part number (see socket datasheet)

[^1]A Wabtec Company

A 400 relay

Spare parts
Spare parts - order part numbers

(1) Parts only for socket
(2) Parts for relay and socket
(3) Parts only for relay

A 400 relay
 User specifications

Installation

Install socket and connect wiring correctly according identification to terminals. Plug relay into socket. Reverse installation into socket not possible due to mechanical blocking by snap-lock.
Don't reverse polarity of coil connection. Relays can be mounted (tightly) next to each other and in any attitude. Warning! Never use silicon near by relays

Operation

Before operating always apply voltage to coil to check correct operation.
Long term storage may corrode the silver on the relay pins. Just by plugging the relay into the socket, the female bifurcated receivers will automatically clean the corrosion on the pins and guarantee a good connection.
Do not use the relay in places with flammable gas as the arc generated from switching could ignite gasses.

Maintenance

Correct operation of relay can easily be checked as transparent cover gives good visibility on the moving contacts. When the relay doesn't seem to operate correct, please check presence of coil voltage. Use a multimeter. If LED is used, coil presence should be indicated. If coil voltage is present, but the relay doesn't work, a short circuit of suppression diode is possible (The coil connection was reversed). If relay doesn't work after inspection, please replace relay unit by a similar model. Send defective relay back to manufacturer. Normal wear and tear excluded.

A 400 relay
 Ordering Scheme

This example represents a A 40024 AG S C V F.
Description: A 400 series relay, Unom: 24 VDC, Keying AG, transil coil protection, weld no transfer, LED indicator, relay cover for wire locking spring

1. Relay model

$$
\text { A } 400
$$

2 \& 3. Nominal voltage and keying

AG	24 VDC
FL	36 VDC
DG	48 VDC
BG	72 VDC
US	96 VDC
SV	110 VDC
EG	125 VDC
SZ	115 VAC
CG	220 VAC

4. Coil overvoltage protection

-	No coil protection
P	Avalanche diode coil protection
S	Transil coil protection
Note: no protection for AC coil versions	

5. Weld no transfer option

$\begin{array}{ll}- & \text { Regular double-break contacts } \\ \text { C } & \text { Weld no transfer }\end{array}$

6. LED coil voltage indicator

```
_ No LED
V LED voltage indicator
```


7. Relay cover type

-	Relay cover with lock pins
F	Relay cover for wire locking spring

㕶

www.morssmitt.com

Mors Smitt France SAS

Tour Rosny 2, Avenue du Général de Gaulle,
F - 93118 Rosny-sous-Bois Cedex, FRANCE
$\mathrm{T}+33$ (0)1 4812 1440, F +33 (0) 148559001
E sales.msf@wabtec.com

Mors Smitt Asia Ltd.

29/F., Fun Towers, 35 Hung To Road
Kwun Tong, Kowloon, HONG KONG SAR
$\mathrm{T}+85223435555, \mathrm{~F}+85223436555$
E sales.msa@wabtec.com

Mors Smitt B.V.

Vrieslantlaan 6, 3526 AA Utrecht, NETHERLANDS

T + 31 (0)30 288 1311, F + 31 (0)30 2898816
E sales.msbv@wabtec.com

Mors Smitt Technologies Inc.

1010 Johnson Drive,
Buffalo Grove, IL 60089-6918, USA
T +1 847777 6497, F +1 8475202222
E salesmst@wabtec.com

Mors Smitt UK Ltd.

Graycar Business Park, Barton under Needwood,
Burton on Trent, Staffordshire, DE13 8EN, UK
$\mathrm{T}+44$ (0) $1283722650 \mathrm{~F}+44$ (0) 1283722651
E sales.msuk@wabtec.com

RMS Mors Smitt

6 Anzed Court, Mulgrave,
VIC 3170, AUSTRALIA
$\mathrm{T}+61(0) 385441200 \mathrm{~F}+61(0) 385441201$
E sales.rms@wabtec.com

[^0]: * With P option less than 70 ms

[^1]: Note: Keying of relay to socket can be specified by adding the keying letters in the part number. See all details in the related socket datasheet.

